If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5b^2+17b-40=0
a = 5; b = 17; c = -40;
Δ = b2-4ac
Δ = 172-4·5·(-40)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-33}{2*5}=\frac{-50}{10} =-5 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+33}{2*5}=\frac{16}{10} =1+3/5 $
| (h+20)/9=5 | | 16−2t=2/3t+9 | | 4x-2+(5x-1=-3(7-x) | | 3x2+17x+20=0 | | 3+4m=15-5m | | (1+x)^12=1.12 | | |5x-6|+7=22 | | 48=3w+12 | | T(n)=2n+7 | | 3q^/6=72 | | 5-(3x+2)+7=2x+1 | | 4.5+1.5=18-3k | | c2–25=0 | | 27=u/2-14 | | 180=28-y | | T=5s+4.83 | | 24=170-x | | 3/4k+3/8k=12 | | -2z+4=-8 | | -v+181=128 | | 7-3n=-22 | | 10x-61+x+10=180 | | 2x-5(x-5)=-6+5x-25 | | (x-150)/50=5 | | 6w+5-3w=7 | | -6x^2+12x+90=0 | | 80+60+3x+7=180 | | 10x-36=90-8x | | x-17x+60=0 | | 4m+15=31 | | 49r^2=147 | | 6y-3×=-6 |